

Fundamentals of current interruption in SF₆ and its alternative gases

Current Zero Club

International Research Group on Interruption Phenomena of Power Switching Devices

- International Research Group on Interruption Phenomena of Power Switching Devices
- Aligned with CIGRE Study Committee A3 (T&D equipment)
- 30 members (upon invitation) from industry and academia
 Scientific and independent
- Founded in 1961
- Specialists' circles on dedicated topics:
 - Gas circle
 - Vacuum circle
 - Low-voltage circle
- http://currentzeroclub.org/
 Today's presentation will be posted there and on e-cigre.org

phasetophase www.l-seven.nl

2

Content

- Current Zero Club (CZC)

Dr. R. P. P. Smeets (KEMA Labs, Arnhem, the Netherlands)

- Introduction

Dr. M. Seeger (Hitachi Energy Ltd., Switzerland)

- Part 1: Introduction and physical processes

Prof. Dr. C.M. Franck (ETH Zürich, Switzerland) Prof. Dr. J.D. Yan (Univ. of Liverpool, United Kingdom)

- Part 2: Comparison of properties of SF₆ alternative gases

Prof. Dr. J.D. Yan (Univ. of Liverpool, United Kingdom) Dr. M. Seeger (Hitachi Energy Ltd., Switzerland)

Introduction

- SF₆ has high Global Warming Potential (GWP) and long lifetime in the atmosphere, which makes it highly desirable to replace SF₆ in electric power equipment with environmentally friendly solutions
- In the recent years SF₆ alternative solutions for switching applications in transmission and distribution (T&D) have been identified using gas circuit breakers (Gas CB) with alternative gases or vacuum circuit breakers (VCB)
- The present webinar will focus on the <u>physical processes</u> relevant to current interruption in <u>HV Gas CB</u> at the zero crossing of the current, i.e. at «current zero» (CZ), using alternative gases as interruption medium.
- The relevant physical processes will be discussed and relevant parameters of SF₆ and alternative gases/mixtures are compared
- Conclusions on the switching performance from such parameter comparison will be drawn and compared to experimental results from literature. Some consequences for the design of HV Gas CB will be discussed.
- This work was prepared within the «gas circle» of the «Current Zero Club» (CZC, http://currentzeroclub.org/) and will be presented by representatives of the organization.

Introduction

Contributors in alphabetical order:

Claessens M. (Hitachi Energy Ltd., Switzerland)

Franck C.M. (ETH Zürich, Switzerland)

Lowke J.J. (CSIRO, Australia)

Robin-Jouan P. (GE, France)

Seeger M. (Hitachi Energy Ltd., Switzerland)

Smeets R.P.P. (KEMA Labs, The Netherlands)

Spencer J. (Univ. Liverpool, United Kingdom)

Tanaka Y. (Kanazawa Univ., Japan)

Uchii T. (Toshiba ESS Corp., Japan)

Yan J. (Univ. Liverpool, United Kingdom)

Part I: Introduction and physical processes

PART 1: Introduction and physical processes

Operation of a high-voltage gas circuit breaker

- Two sets of contacts: main contacts and arc contacts
- A mechanical actuator separates the contacts
- High-speed gas flow is generated during the arcing process to remove energy (heat) from the arc column
- A nozzle is used to regulate the flow around the arc column

Aims of circuit breaker design

- Creating a gap between the contacts rapidly
- Generating and regulating the gas flow field in an economic and effective manner
- Making the arc a good conductor at high current
- Forcing it to turn into a good insulator after current interruption

Closed

Arcing

Open

PART 1: Working principle of circuit breakers

- ① Main contacts start operation.
- ② Main contacts separate.
- (The arcing contacts are still connected.)
- ③ Arcing contacts separate and arc ignites.
- ④ Upstream gas is pressurized.
- (5) Gas blasts onto the arc.
- (6) The arc is quenched successfully at a current zero.

Courtesy of Siemens <https://www.youtube.com/watch?v=k6spLhEge6l>

Heating volume

PART 1: Introduction and physical processes

Roles of the arc

- An arc is an ionized gas (a plasma consisting of electrons, ions and neutral particles) sustained by an electric current
- Created between the separating arc contacts due to an electrical field across the gap
- Rapidly changes its length and size to fill an elongating contact gap
- Behaves like a variable resistor

CZC

PART 1: Introduction and physical processes

Sequence of events during the breaking process

1) Fault current passing through closed arc contacts

11

Current Zero Club

PART 1: Introduction and physical processes

- 1) Fault current passing through closed arc contacts
- 2) Arcing following separation of arc contacts

PART 1: Introduction and physical processes

Sequence of events during the breaking process

- 1) Fault current passing through closed arc contacts
- 2) Arcing following separation of arc contacts
- 3) Approaching the final current zero

Arc column shrinks and strong

czc

PART 1: Introduction and physical processes

Sequence of events during the breaking process

- 1) Fault current passing through closed arc contacts
- 2) Arcing following separation of arc contacts
- 3) Approaching the final current zero
- 4) Post arc recovery (100 us)

Hot gas (residual plasma) in

CZC

PART 1: Introduction and physical processes

Variation of arc resistance

- Mainly determined by the temperature (distribution) of the arcing gas
- The physics of mass and heat transfer governs the change of the arc temperature
- Electrical heating (Ohmic heating) increases temperature of gas and reduces the arc resistance
- Cooling (energy removal from arc column) lowers the temperature and leads to higher resistance

Arc resistance is

- dependent on temperature (high temperature leads to low resistivity)
- proportional to length
- Inversely proportional to cross-sectional area

Rapidly removing heat from the arc (i.e. arc cooling) is key to circuit breaker design.

PART 1: Introduction and physical processes

Physical mechanisms: Convection

The design of modern high-voltage gas circuit breakers is based on the principle of gas blast

- Gas blast means the generation and use of high-speed gas flow for arc control
- **Convection**: When a fluid (such as a gas) flows, its mass together with the thermal energy (heat) stored in it moves in space, realizing energy transfer
 - ~ Density * Velocity * Energy per unit mass
- Example: blowing out a candle

Convection plays an important role in high current arcs where the arc column has a relatively large diameter

PART 1: Introduction and physical processes

Physical mechanisms: Thermal conduction

- Transfer of heat in gas, liquid and solid
- The medium does not need to move macroscopically
- Through collisions of randomly moving particles (atoms, molecules, electrons and ions)
- Conduction is proportional to temperature difference (gradient)
- The ability is defined by its thermal conductivity
 - ~Thermal conductivity * Gradient of temperature
- Example: A metal bar conducts heat from a fire cooling the fire

Thermal conduction becomes important when gas is not moving or moving slowly in direction of temperature gradient

CZC

PART 1: Introduction and physical processes

Physical mechanisms: Radiation

- Electromagnetic wave in nature but can also be interpreted using the concept of photons
- Photons at different wavelengths or frequencies
- Some photons get absorbed when travelling in the gas, so gas is "optically thick" (less transparent) to them
- Some photons escape from the arc. This is why we can see an arc.
- Radiation transfer takes place in all directions

Radiation transfer is an important mechanism for energy transfer in arcs

PART 1: Introduction and physical processes

Physical mechanisms: Turbulence

- Develops in unstable flows (in contrast to laminar flows)
- Turbulence eddies (3D) of different sizes
- Eddies continuously generated and destroyed
- Rotation of eddies enhances mixing of hot and cold gases
- Most effective in removing heat from a thin arc column (diagram below)
- A dominant arc cooling mechanisms at current zero period
- Very challenging to model

Source of ocean eddies: <u>https://cosmosmagazine.com/earth/oceans/energetic-ocean-eddies-on-the-rise/</u> Source for nozzle turbulence: Ragaller K. (ed.), Current Interruption in HV Networks, New York, NY: Plenum Press, 1978 [ISBN 0-306-40007-3]

Turbulence is determined by 3D processes. It is the main cooling process near current zero

PART 1: Arc thermal cooling

Radial temperature profile and arc column size

• Energy loss by convection and radiation are decisive for the radius of the high current arc

- Approaching current zero, the arc radius reduces and at CZ a hot plasma column is remaining
- Among radiation, convection, conduction and turbulent cooling, turbulence is the dominant energy removal mechanism approaching current zero
- This is determined by thermodynamic parameters

Radial temperature profile decreases with current

Thermodynamic parameters, radiation and turbulence are important for the radial arc temperature profile

PART 1: Composition of the plasma

Composition varies with temperature and pressure

- Plasma decomposes into many species
- This process is defined by temperature, pressure and initial concentration of gas components
- At high temperatures above 10000 K the plasma consists mainly of atoms, ions and electrons
- When plasma cools down molecules are formed
- Reactions occur on finite time scale leading to deviations from chemical equilibrium

Hugh M Ryan (Ed.), High Voltage Engineering and Testing (3rd Edition), IET Publications, 2013[978-1849192637]

The composition of the plasma for given gas mixture depends on pressure, temperature and time scale

PART 1: Electron attachment

Plasma Processes influence electron removal or enhancement and thus arc conductance near "current zero". Knowledge of them may be important in selecting alternative gases.

- <u>Electron diffusion</u>: Electrons can diffuse out of a narrow arc channel and be attached in the surrounding gas leading to an increase of arc resistance.
- <u>Electron attachment</u>: Electrons in SF₆ and alternative gases can attach to molecules, forming negative ions. These have conductivities of only about 1% of electrons.
- <u>Ionization and electron attachment coefficients</u> have been measured for common gases. Results for SF₆ and air show that attachment in SF₆ is more than an order of magnitude higher than for air.
- <u>Critical electric fields:</u> High fields applied after current zero can produce electric breakdown. This is described by the critical electric field which is decisive for the dielectric recovery. At the critical field electron attachment equals ionisation, i.e. net ionisation is zero.

Electron attachment might play a role for thermal interruption and is decisive for the dielectric recovery

CZC

PART 1: Arc zone geometry influence

Influence of axial pressure profile in the arc zone

- The axial pressure profile in the arc zone influences the arc radius and gas/plasma acceleration
- In the nozzle throat the speed of sound is reached
- Onset of turbulence is due to shear flow at the arc boundary
- Widening of arc downstream of nozzle throat
- Most effective arc cooling is in the region of the throat and downstream region
- High pressure and acceleration leads to small arc cross section with high convective and turbulent cooling

The arc zone geometry is an important design parameter for the performance

CZC

PART 1: Thermal interruption

Thermal recovery

- After CZ, the resistance of the arc channel increases
- Thermal interruption occurs if the power input (defined by post-arc current (PAC) and applied TRV) is less than the cooling power, leading to a decrease of PAC

Thermal re-ignition

- Decision within a few microseconds
- Slow breakdown (several μs)

Thermal re-ignition occurs in the residual arc channel, very shortly after CZ

PART 1: Dielectric recovery

Early dielectric recovery

- Breakdown is of "dielectric" nature, i.e., electron avalanche processes in contrast to thermal runaway. Characterized by fast breakdown (order of 10 ns)
- Breakdown in the arc channel below 100 μ s after CZ, typically

Early dielectric recovery occurs inside the residual plasma column

CZC

PART 1: Dielectric recovery

Late dielectric recovery

- Breakdown is of "dielectric" nature, i.e., electron avalanche processes in contrast to thermal runaway. Characterized by fast breakdown (order of 10 ns)
- Breakdown <u>outside</u> the arc channel, <u>above 100 μs</u> after CZ, typically

Late dielectric recovery occurs outside the residual plasma column

PART 1: Pressure influence of Thermal Interruption

Influence of upstream pressure in axially blown arcs

- The thermal interruption performance increases with about the square-root of the upstream pressure
- This is due to decreasing arc diameter with increasing pressure, turbulent cooling (thinner arc is easier to cool) and pressure dependence of the material properties
- Shown in numerous experiments with various gases and by theory
- Helps to benchmark different gases

The thermal interruption performance increases with the square-root of the applied upstream pressure

PART 1: Simulations

Numerical tools

- 0D Macroscopic tools (no discretisation of the circuit breaker geometry)
- 2D axisymmetric and 3D tools
- In-house developments and commercial solutions (ANSYS, COMSOL, ...)

Validations

- Validation through dedicated test devices: overpressure, temperature (spectroscopy), erosion, radiative flux, arc voltage, post arc current, optical diagnostics for visualisation of density variations, electron density etc
- Validation through circuit breaker test results: overpressure, arc voltage, erosion, post arc current

Reliability

- Possibility to build criteria for design studies (for thermal and dielectric interruptions)
- Good agreement between measurement and simulation results
- Relatively good agreement for breaking prediction (depending on the test duties)

Courtesy GE Renewable Energy

czc

PART 1: Simulations

General aspects

- · Numerical simulation tools are essential to increase our arc physics knowledge
- Allow fundamental analysis, test result explanation and test reduction
- Developments during the last 20 years allow for industrial applications

Fundamentals

Fundamental continuity relationships for the gas are solved using finite element or volume methods

What has to be considered:

- Maxwell equations defining electric and magnetic fields
- Joule effect and Lorentz forces
- Radiation process (emission and absorption in the gas)
- Wall erosion modelling (insulating parts and electric contacts)
- Ionization considered via physical property variations
- Turbulence (fundamental work to be done)
- Deviations from thermal and chemical equilibrium

CZC

PART 1: Non-LTE influence

- Current interruption= Sufficient reduction of electrical conductance between electrodes
- TE (Thermodynamic Equilibrium)

Composition in a plasma is uniquely determined by temperature

→ All thermodynamic and electrical properties (e.g. electrical conductance) are uniquely determined by temperature

• LTE (Local Thermodynamic Equilibrium)

Temperature is distributed, and TE can be assumed at each local point

• Non-LTE

(1) *Chemically non-equilibrium*: Composition in plasma NOT uniquely determined by temperature, typically when process time scale is significantly shorter than chemical reaction time

(2) *Thermally non-equilibrium*: Temperatures of electrons and gas species are different, typically when very fast transient electrical field is applied to the plasma

K. P. Brand, J. Kopainsky, 'Particle Densities in a Decaying SF₆ Plasma', J. Appl. Phys., vol. 16, pp. 425-432, 1978

LTE concept

Deviations from equilibrium are important for prediction of interruption performance

PART 1: Summary of influencing parameters

External parameters (defined by design)

- Imposed axial pressure profile
- Blow gas pressure and temperature
- Gas composition and filling pressure
- Contact separation velocity
- Nozzle material

Part II: Comparison of properties for SF₆ alternative gases

PART II: Properties of gases and mixtures

Gases of interest

Abbreviations: C4-FN= C_4F_7N C5-FK = $C_5F_{10}O$ GWP = Global warming potential

czc

	CAS number	Molec. weight (g/mol)	Density (kg/m3) at 0.1 MPa	Boiling point/ °C	GWP (100yr)	ODP	Flam mab ility	Toxicity LC50 (4h) ppmv	Toxicity TWA ppmv	Electric strength/ p.u. at 0.1 MPa
SF ₆	2551- 62-4	146	6.17	-64	25200*	0	No	> 5e5	1e3	1
CO ₂	124-38- 9	44	1.98	-78.5	1	0	No	> 3e5	5e3	≈ 0.3
C5- FK	756-12- 7	266	10.7	26.9	< 1	0	No	≈2e4	225	≈ 2
C4- FN	42532- 60-5	195	7.9	-4.7	2100**	0	No	12e315e3	65	≈ 2

Pure gases

Gas mixtures for switchgear

	C _{ad} % molar	p _{min} / MPa	T _{min} ∕°C	GWP (100y)	D.S.	Toxicity LC50 ppmv
SF ₆	-	0.430.6	-4131	25200	0.861	-
CO ₂	-	0.61	≤ -48	1	0.40.7	> 3e5
CO ₂ /C5-FK/O ₂	≈ 612	0.7	-5+5	1	≈ 0.750.86	> 2e5
$CO_2/C4$ -FN and $CO_2/C4$ -FN/O ₂	≈ 3.56	0.70.8	-3010	293690	≈ 0.870.96	> 1e5

* IPCC6: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf

** https://multimedia.3m.com/mws/media/1132124O/3m-novec-4710-insulating-gas-tech-data-sheet.pdf

Important properties: boiling point, electric strength, GWP, Ozone layer Depletion Potential and toxicity

PART II: Composition

Composition calculations of different gas mixtures

- At cooling down C₄F₇N does not completely recombine into its original molar concentration once thermally dissociated
- This is different from SF₆
- Composition defines the material parameters (thermodynamic, transport, radiation etc)
- C₄F₇N mixtures more complex compared to CO₂/O₂, similar to SF₆

The composition of the plasma and hot gas is decisive for the interruption performance

PART II: Composition in various phases

Composition in the arc at various phases

- Composition varies over the arcing and interruption phases (here shown for LTE)
- Different for the different gases and mixtures
- Non-chemical equilibrium needs to be considered: e.g. the time it takes for C_4F_7N to be dissociated is close to 0.1 ms at 2000 K, while at 1500 K, the value is about 5 s from calculations [1]
- Not only temperature and pressure but also time will be of importance

Note: In the non-arced region $C_{4}F_{7}N$ remains unaffected

[1] Chen L, Zhang B, Xiong J, Li X, and Murphy A B, "Decomposition mechanism and kinetics of iso-C4 perfluoronitrile (C₄F₇N) plasmas", J. Appl. Phys. 126, 163303 (2019); https://doi.org/10.1063/1.5109131 -0.015

-0.010

Current [A]

PART II: Radiation

Radiation as an energy transfer mechanism

- Emitted radiation is absorbed by the medium it passes through
- Differences between SF₆ and C4-FN are in the discrete emission and absorption of the different species (atomic and molecular excitations)
- Continuous absorption is at similar level in SF₆ and CO₂ based mixtures
- Consequence is a different energy transfer through the arc
- Affects the arc temperature profile and the energy leaving the arc

Frequency (10e15 Hz)

Radiation spectra are complex. The differences lead to changes in energy transport through the arc₃₅

PART II: Radiation

Radiative energy transfer

- Radiative energy flux due to travelling of photons
- Flux varies in space because of emission and absorption of photons;
- Net effect-changes significantly across the arc column
- Radiation transfer in C₄F₇N+CO₂ mixture) is slightly different from that in SF₆ for given temperature profile and pressure
- The temperature range of absorption leads to a characteristic temperature profile of the arc
- Larger absorption in the outer region leads to a thicker arc
- Differences between gases for the high current arc are not very pronounced

Gas Medium	Net emission from arc core (W/m)	Net absorption at arc edge (W/m) and % of net emission from arc core	Net radiative power leaving arcing gas (W/m) and % of net emission from arc core
SF ₆	8.35E+07	6.88E+07 (82%)	1.47E+07 (18%)
5% C ₄ F ₇ N+95% CO ₂	7.80E+07	5.99E+07 (77%)	1.82E+07 (23%)
PTFE (C ₂ F ₄)	7.60E+07	5.63E+07 (74%)	1.97E+07 (26%)

There is net emission of radiation from the arc centre, but a considerable fraction is re-absorbed at the arc edge

CZC

PART II: Material properties relevant for current interruption

Specific heat capacity at constant pressure

- Reflects the ability of a unit mass of a gas to store energy when temperature changes
- Nonlinear function of temperature
- Peaks result from chemical reactions and ionisation
- SF₆ is able to store more energy in its nonconducting temperature range below 4000K. This helps absorbing the thermal energy during the arc cooling process
- CO₂ based gas mixtures are considerably different from SF₆

PART II: Material Properties relevant for current interruption

Energy density in gas

- The occurrence of $\rho \cdot Cp$ peaks with CO_2 based gas mixtures above the conducting temperature increases the energy content in the arc column
- More cooling power will be needed to reduce the arc temperature in these gases
- The electrical conductivity of CO_2/O_2 mixtures are much lower than SF_6 below 5000 K
- C4-FN mixture similar to CO₂/O₂
- From this it can be expected that C4-FN/CO₂ mixtures might be only slightly better in thermal interruption performance than CO₂/O₂ mixtures

Compared with SF₆, CO₂ based gas mixtures require more heat to be removed from the conducting column

PART II: Arc radius

Turbulence effect

- Turbulence enhances heat transfer where temperature gradient exists
- Turbulent cooling effect can be quantified by an effective thermal conductivity K_v , which is related to $\rho \cdot C_p$
- At low current, arcs in turbulent flow have very different temperature profiles in different gases.
- Large arc radius means turbulent cooling at the surface is less effective to cool the more distant hot core
- A thin arc is easier to cool

In SF₆ arcs, turbulence enhanced energy transfer is strongest in the region immediately surrounding the conducting column

In SF₆, arc column is thin and temperature gradient inside the conducting column is steep

Temperature profile and arc radius are important for arc cooling

- (2) Low K_t
- (3) Steep temp. gradient
- (4) Thin core column

At boundary of conducting core

- (1) Fast increasing K_t spreads heat
- (2) High ρC_p absorbs more energy
- (3) Transition to low temp. gradient

Conducting core (1) Peaks of pC_p (2) Peaks of *K_t* (3) Reduced temp. gradient (4) Core broadened

Air

At boundary of conducting core

1) Moderate K_t

(2) Moderate ρC_p

(3) Temperature gradient not significantly reduced

Temperature profile in air much larger than in SF₆. CO₂ based mixtures are in between these extremes

PART II: Arc Temperature Profile

Radial temperature profile towards CZ

- Approaching current zero the SF₆ arc reduces its radius more rapidly than the non- SF₆ arc
- The energy stored in the SF₆ arc is much lower than that in non- SF₆ arcs owing to its thin arc column and low $\rho \cdot C_p$
- Among radiation, convection, conduction and turbulent cooling, turbulence is the dominant energy removal mechanism approaching current zero
- Arc profile is an indicator for interruption, direct interruption performance still not sufficiently precise to predict

Under identical discharge conditions in a nozzle, non-SF₆ arcs have larger diameters than SF₆ arcs₁₁

CZC

PART II: Arc Temperature Profile

Arc temperature profile and thermal interruption

- Calculations show that temperature profile in CO_2 ٠ based mixtures is in between SF₆ and air
- Roughly this might explain qualitatively why CO_2 in experiments has higher thermal interruption capability than air but lower than SF_6

9

Simulation

Temperature profile in CO_2 based mixtures is in between SF_6 and air, this correlates with interruption performance

PART II: Thermal interruption comparison

Comparison of material properties and

calculations of arc temperature profile indicate ranking:

Air < $CO_2 \leq CO_2/C4$ -FN < SF_6

Experimental evidence (SF₆ = 1)

- CO_2 and CO_2/O_2 is in the range: 67-83% of SF_6
- CO_2 based mixtures with C4-FN and C5-FK are in the range 67-87% of SF_6
- Adding C4-FN or C5-FK does not seem to significantly change performance, i.e. within uncertainties
- In agreement with expectations based on material parameters

Stoller 2013: P. Stoller et al., " CO_2 as an Arc Interruption Medium in Gas Circuit Breakers", IEEE Trans Plasma Science, Vol. 41, No. 8, pp. 2359, 2013

Mantilla 2017: J. D. Mantilla, Kriegel, and Panousis, 'Switching Interruption Performance Comparison between SF₆, CO₂ and Fluoroketones-based mixtures in HVCB', CIGRÉ Winnipeg 2017 Colloquium Study Committees A3, B4 & D1, September 30 – October 6, 2017

Kosse 2016: S. Kosse, P.G. Nikolic and G. Kachelriess, "HOLISTIC EVALUATION OF THE PERFORMANCE OF TODAY'S SF₆ ALTERNATIVES PROPOSALS", CIRED 24th International Conference on Electricity Distribution Glasgow, 12-15 June 2017, paper 0819

Stoller 2017: P.C. Stoller, C.B. Doiron, D. Tehlar, P. Simka and N. Ranjan, "Mixtures of CO₂ and C₅F₁₀O Perfluoroketone for High Voltage Applications", IEEE Transactions on Dielectrics and Electrical Insulation Vol. 24, No. 5; October 2017, pp 2712-2721

Under same conditions CO₂ based mixtures have about 20-30% lower thermal interruption performance than SF₆

PART II: Arc conductance decay

- Due to the reduced cooling and thicker arc column: Conductance decay slower than SF₆
- Close to CZ (200 ns before) the arc conductance g₂₀₀ relates to the interruption performance, i.e. is an indicator of performance
- Critical g₂₀₀ value about a factor of two lower than in SF₆

D. Schiffbauer et al., 'High Voltage F-gas Free Switchgear applying CO₂/O₂ Sequestration with a Variable Pressure Scheme', CIGRE-IEC 2019 Conference on EHV and UHV (AC & DC) ,April 23-26, 2019

Lee W Y et al, "Comparison of the Interrupting Capability of Gas Circuit Breaker According to SF_6 , g^3 and CO_2/O_2 Mixture", Energies 2020, 13, 6388; doi:10.3390/en1

D. Schiffbauer et al., 'High Voltage F-gas Free Switchgear applying CO_2/O_2 Sequestration with a Variable Pressure Scheme', CIGRE-IEC 2019 Conference on EHV and UHV (AC & DC) ,April 23-26, 2019

Under same conditions CO₂ based mixtures show a slower conductance decay around CZ

PART II: Post arc current

- Post arc current (PAC) duration with CO₂ based mixtures is longer compared to SF₆
- Typical duration from L90 and L75 tests is in the range of 2-6 us
- Measured PAC peaks are typically in the range of 0.5-10 A. The reason for the large difference in measurements is still not clarified
- Large variation of PAC peak and duration possibly due to blow conditions, arc zone design, gas and on circuit parameters
- Different from SF₆ with PAC peaks well below 0.5 A and duration of less than 1 us. Since difficult to measure variations possibly less visible in SF₆

J. D. Mantilla, Claessens, and Kriegel, 'Environmentally friendly perfluoroketones-based mixture as switching medium in high voltage circuit breakers', e-cigré, Aug. 26, 2016.

Significant differences in PAC between SF₆ and CO₂ based mixtures but also between different measurements

PART II: Design related properties

- So far intrinsic material properties were compared
- By design the conditions at CZ can be adapted:
 - o Blow pressure
 - Axial pressure profile
 - o Blow gas temperature
- Important material parameters for this are:
 - Adiabatic index ($\gamma = c_p/c_v$)
 - Velocity of sound
- Together with details of the arc zone (flow cross sections etc) they determine the pressure and temperature of the blow gas at CZ
- The ablation of PTFE nozzles will affect the composition of blow gas

CZC

PART II: Design related properties

Adiabatic index (y)

- Lower for SF₆ below 1900 K, which is the typical range for HV CB heating chamber and blow gas
- Pressure in a volume scales with energy input and (γ-1)
- Heating volume pressure and exhaust pressure are affected.
- The heating volume pressure is, therefore, higher in CO₂ based mixtures compared to SF₆

P. C. Stoller, M. Seeger, A. A. Iordanidis, and G. V. Naidis, ' CO_2 as an Arc Interruption Medium in Gas Circuit Breakers', IEEE Trans. Plasma Sci., vol. 41, no. 8, pp. 2359–2369, Aug. 2013

Bousoltane, Vigoroux, Y. Kieffel, Zhou, and P. Robin-Jouan, 'Performance evaluation of CO_2 and fluoronitrile mixture in comparison with SF_6 ', Cigre Sess. 47, 2018.

Higher adiabatic index leads to higher pressure build up

PART II: Design related material properties

Speed of sound

- Lower for SF₆ below 2000K
- This affects outflow from heating volume, i.e. in CO₂ based mixtures pressure drop is faster
- This might be considered in the design, e.g. by adaption of flow cross sections
- Faster removal of hot gas from the arc zone with CO₂ based mixtures due to higher velocity

P. C. Stoller, M. Seeger, A. A. Iordanidis, and G. V. Naidis, 'CO₂ as an Arc Interruption Medium in Gas Circuit Breakers', IEEE Trans. Plasma Sci., vol. 41, no. 8, pp. 2359–2369, Aug. 2013

Speed of sound is higher in CO_2 based mixtures compared to SF_6

CZC

PART II: Critical Field

- Critical field (at same pressure) in CO₂ much lower than in SF₆
- Fluorinated additives to CO₂ can increase significantly the critical field due to positive synergy
- CO_2/O_2 mixtures are in the range of 25% of SF_6
- C4-FN/CO₂/O₂ mixtures with 5% admixtures are in the range of 60 % of SF₆
- Lower critical field can be, as for insulation, compensated by pressure increase

 ${\sf E}_{\sf cr}/{\sf E}_{\sf cr_SF6}$

 CO_2 mixtures with C_4F_7N show synergy, a small amount increases significantly the critical field

Gases and mixtures

PART II: Dielectric recovery

 Rate of rise of recovery is known to scale with pressure, temperature and critical field

 $du/dt \sim E_{cr}(p,T)$

 For similar temperature decay and pressure, it is expected (see previous slide) that the recovery scales as

CO_2 (25%)< CO_2 /C4-FN or CO_2 /C5-FK (60%) < SF_6 100%)

- Details depend % of admixture, design, blow conditions, short circuit current, non-equilibrium effects
- SF₆ recovers faster than CO₂ based gases
- CO₂ based gases with additives recover faster than CO₂/O₂

P.C. Stoller, C.B. Doiron, D. Tehlar, P. Simka and N. Ranjan, "Mixtures of CO_2 and $C_5F_{10}O$ Perfluoroketone for High Voltage Applications", IEEE Transactions on Dielectrics and Electrical Insulation Vol. 24, No. 5; October 2017, pp 2712-2721

Radisavljevic B et al, "SWITCHING PERFORMANCE OF ALTERNATIVE GASEOUS MIXTURES IN HIGH-VOLTAGE CIRCUIT BREAKERS", Proc. 20th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, August 27 – September 01, 2017

Dielectric recovery ranking based on critical field confirmed by experiments

CZC

Part II Design modifications to adapt to the new media

Certain modifications are necessary to adapt to the "less favorable" parameters of the new media

- Higher filling pressure
- Higher contact separation speed may be required
- Larger compression volume
- Re-design of nozzle and arcing volume e.g. increase nozzle length and reduce its diameter
- Adjustment of electrical field control near contacts

CIGRE Paris session 2022, paper 10966

Design modifications are essential to accommodate the "new gases"

PART II: Summary and outlook

Thermal interruption and early dielectric recovery

- Strongly coupled processes, many parameters involved
- Difficult to simulate
- Simple predictions based on material properties remain qualitative
- For thermal interrupting in CO_2/O_2 mixtures, CO_2 is a good performer
- For dielectric recovery, addition of low percentage (≈ 5%) C4-FN is of importance. With pressure increase a performance close to SF₆ can be reached, as for the insulation

Outlook

- Experimental benchmarks needed
- Non-equilibrium material properties are needed
- Simulations of the coupled process are needed including radiation, turbulence, validated turbulence models etc
- Effect of electron attachment on thermal interruption needs further clarification
- 3D arc instabilities can lead to fluctuation in interruption performance and need further investigations

